免费成人性网站_成人手机在线视频_久热成人在线视频_久国产精品韩国三级视频_日本va欧美va欧美va精品_国产在线一区二区综合免费视频_国产一区二区三区四区在线观看_日韩国产精品91_国产成人精品在线看_日韩av一级片

產品展示
當前位置:首頁 > 全部產品 > 英國Ossila > 材料 > Ossila材料PTB7 CAS:1266549-31-8 PTB7

Ossila材料PTB7 CAS:1266549-31-8 PTB7

Ossila材料PTB7 CAS:1266549-31-8 PTB7
Ossila代理、*、交期準時、歡迎新老客戶!!!

分享到:

只用于動物實驗研究等

Batch Information

Batch No.MwPDStock Info
M21118,0001.75Sold out
M212> 40,0002.0Sold out
M21385,0002.0In stock

Ossila材料PTB7 CAS:1266549-31-8 PTB7

Applications

PTB7 for high-performance organic photovoltaics.

Poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]], more commonly known as PTB7.

In stock now for immediate dispatch worldwide.

PTB7 gives some of the highest reported efficiencies for polymer:fullerene solar cells due to its extended absorption into the near infra-red and lower HOMO level. Together with our complete package of processing information, PTB7 becomes a quick and easy way to improve device efficiencies. This represents a cost-effective method to increase performance and impact of devices and data for a wide range of OPV related research.

At typical concentrations for spin-coated devices of 10 mg/ml, a standard batch of 100 mg will produce 10 ml of ink - enough to coat 200 of Ossila's standard sized substrates even assuming 50% ink loss during preparation and filtration. At concentrations of 1 mg/ml (more typical for ink-jet printing and spray coating) up to 100 ml of ink can be produced.

In a standardised reference architecture (using a PEDOT:PSS hole interface and Ca/Al electron interface) we have shown this batch to give a PCE of 6.8% (see data sheet below) and up to 7.4% using PFN. By using new interface materials and architectures PTB7 has been shown to reach efficiencies of 9.2% PCE in the literature [1,2].

The high solubility in a wide range of solvents makes ink preparation and filtration simple, and PTB7 is one of the easiest materials we have ever worked with (simply shake it to dissolve). This also makes it an excellent candidate for a variety of coating techniques including ink-jet printing, spray coating and blade coating.

For information on processing please see our specific fabrication details for PTB7, general fabrication video, general fabrication guide, optical modelling paper on our standard architecture [3], or us for any additional help and support.

References (please note that Ossila has no formal connection to any of the authors or institutions in these references):

  • [1] Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure Zhicai He et al., Nature Photonics, V 6, p591–595 (2012).
  • [2] Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells Zhicai He et al., Advanced Materials, V 23, p4636–4643 (2011).
  • [3] Optimising the efficiency of carbazole co-polymer solar-cells by control over the metal cathode electrode Darren C. Watters et al., Organic Electronics, V 13, p1401–1408 (2012)
  • [4] Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%, N. Gasparini et al, Nat. Energy, 16118 (2016); doi:10.1038/nenergy.2016.118 (Ossila PTB7 was featured in this paper).

Ossila材料PTB7 CAS:1266549-31-8 PTB7

Datasheet

PTB7 chemical structureChemical structure of PTB7; Chemical formula (C41H53FO4S4)n.

Specifications

Full namePoly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]]
SynonymsPTB7
CAS number1266549-31-8
Absorption670 nm (CH2Cl2), 682 nm (film)
SolubilityChloroform, Chlorobenzene, o-DCB

 

Usage Details

Inverted Reference Devices

Reference device were made on batch M211 to assess the effect of PTB7:PC70BM active layer thickness on OPV efficiency using an inverted architecture with the below structure. These consisted of the below structure and were fabricated under inert atmosphere (glovebox) before encapsulation and measurement under ambient conditions.

Glass / ITO (100 nm) / PFN (6.5 nm) / PTB7:PC70BM (1:1.5) / MoOx (15 nm) / Al (100 nm)

For generic details please see the general fabrication guide and video. For specific details please see the below condensed fabrication report which details the optical modelling and optimisation of the multilayer stack.

Previously it has been shown that PFN of around 6.5 nm gives optimum performance [1-3,P021] while modelling has shown that an Al back cathode gives higher performance than Ag when used with MoOx [4].

The PTB7:PC70BM solution was made in chlorobenzene at 25 mg/ml before being diluted with 3% diiodooctane (DIO) to promote the correct morphology.

Active layer thicknesses of 75 nm, 90 nm and 105 nm were chosen corresponding to the lower, middle and upper end of the "thin film" absorption peak of a typical stack as predicted by optical modelling [1]. For each of these thickness a total of four substrates was produced, each with 4 pixels and the data presented below represents a non-subjective (no human intervention) analysis of the best 75% of pixels by PCE (12 pixels for each condition).

An additional two substrates were also prepared with a methanol wash to help remove the DIO as has been reported in the literature to help improve performance[5].

Overall, the maximum efficiency of 7.2% average PCE (7.4% maximum) was found at 75 nm film thickness.

 

Efficiency for different PTB7 spin speeds - inverted architectureJsc for different PTB7 spin speeds - inverted architectureVoc for different PTB7 spin speeds - inverted architecture Fill factor for different PTB7 spin speeds - inverted architectureFigure 1: PCE, Jsc, Voc and FF for inverted architecture devices at different spin speeds. Data shown is averaged with max and min overlaid with filled circles (please see note of Dektak measurements). As previously reported [1,2,3], films of approximay 90 nm give the highest performance with greater Jsc and only minor loss in fill factor.

 

PTB7 JV Curve for inverted architecture
Figure 2: The JV curve for the best performing device - inverted architecture.

 

Note 1: Dektak Thickness calibration

We normally calibrate thin films by use of a Dektak surface profiler, however the use of DIO results in an enhanced level of uncertainty in the film as the DIO will take several hours to fully dry under normal conditions and is likely to undergo some slight further shrinkage when placed in vacuum. The DIO can also be removed by baking the substrate on the hotplate at 80°C for about 10 mins which can be useful for doing quick measurements but also drives excess phase separation between the polymer and PCBM making it unsuitable for device work.

Note 2: Effect of epoxy

Due to the very high solubility of the PTB7 it was noted during fabrication that the film changed colour when in contact with the EE1 encapsulation epoxy in liquid form for extended periods indicating that there was some miscibility. Inspection of the active areas underneath the top cathode indicated that the epoxy had not seeped into the active area before curing and device metrics indicate that this did not appear to affect performance. However, we would recommend minimising contact time between the epoxy and PTB7 films before UV curing.

 

Fabrication

Substrates and cleaning

  • Pixelated Cathode substrates (S173)
  • 5 mins sonication in hot Hellmanex III(1 ml in beaker)
  • 2x boiling water dump rinses
  • 5 mins sonication in warm IPA
  • 2x dump rinses
  • 5 mins sonication in hot NaOH
  • Dump rinse in boiling water
  • Dump rinse in water
  • Stored in DI water overnight and until use

PFN Solution

  • Dissolved at 2 mg/ml
  • Acetic acid dissolved 1:9 in methanol to make stock solution
  • 2 μl/ml of acetic added to solution
  • Stirred for 30 mins
  • Filtered through 0.45 μm PVDF filter

PFN Test Films

  • PFN Test film initially spun at 500 rpm and gave 20 nm
  • Second test film spun at 1000 rpm and gave 16 nm
  • Thickness was extrapolated to 6.5 nm at 6000 rpm

Active Layer Solution

  • Fresh stock solutions of PTB7 (Ossila M211) made on at 10 mg/ml in CB and dissolved with stirbar for 1 hour
  • Mixed 1:1.5 with dry Ossila 99% C70 PCBM to make overall concentration of 25 mg/ml and dissolved with stirbar for 1 hour
  • Old stock solution of 1,8 Diiodooctane mixed 1:1 with CB to make measuring out small quantities easier
  • DIO/CB mixture added to solution to give overall DIO amount of 3%

Active Layer Test Films

  • Test film spun at 1000 rpm for 2 mins using unfiltered solution and dried using methanol before Dektak
  • 1000 rpm gave approximay 85 nm

Active layers

  • Devices spun using 30 μl dynamic dispense (20 μl gave only moderate wetting/coverage)
  • Non methanol devices spun for 2 mins
  • Methanol devices spun for 30 seconds, then coated with 50 μl methanol by static dispense then spun at 2000 rpm for 30 seconds.
  • Cathode wiped with CB
  • Vacuum dried in glovebox antichamber for 20 mins

Evaporation

Left in chamber over the weekend and evaporated with the below parameters.

  • 15 nm MoOx at 0.2 ?/s
  • 100 nm Al at 1.5 ?/s
  • Deposition pressure

Encapsulation

  • As standard using Ossila EE1, 30 mins UV in MEGA LV101

Measurements

  • JV sweeps taken with Keithley 237 source-meter
  • Illumination by Newport Oriel 9225-1000 solar simulator with 100 mW/cm2 AM1.5 output
  • NREL certified silicon reference cell used to calibrate
  • Lamp current: 7.8 A
  • Solar output at start of testing: 1.00 suns at 25°C
  • Solar output at end of testing: 1.00 suns at 25°C
  • Air cooled substrates
  • Room temperature at start of testing: 25°C
  • Room temperature at end of testing: 25°C
  • Calibrated aperture mask of size 0.256 mm2

 

Standard (Non-inverted) Reference Devices

Reference device were made on batch M211 using a standardised architecture for comparative measurements using Ossila standard substrates and materials. These consisted of the below structure and were fabricated under inert atmosphere (glovebox) before encapsulation and measurement under ambient conditions.

Glass / ITO (100 nm) / PEDOT:PSS (30 nm) / PTB7:PC70BM (variable) / Ca (2.5 nm) / Al (100 nm)

For generic details please see the fabrication guide and video. For specific details please see the below condensed fabrication report and also Watters et al. [3] which details the optical modelling and optimisation of the multilayer stack.

For this standard reference architecture an average PCE of 6.6% was achieved for the optimised thickness with a peak efficiency of 6.8%. Note that no other optimisation was performed (blend ratio, DIO concentration, drying conditions etc) and so further small improvements may be obtained by varying these conditions and significant improvements obtained by using alternative interface materials [1,2].

Efficiency for different PTB7 spin speeds - Standard architecture Jsc for different PTB7 spin speeds - Standard architecture Voc for different PTB7 spin speeds - Standard architecture Fill factor for different PTB7 spin speeds - Standard architectureFigure 3: PCE, Jsc, Voc and FF for standard architecture devices at different spin speeds. Data shown is averaged with max and min overlaid with filled circles (please see note of Dektak measurements). As previously reported [1,2,3], films of approximay 90 nm give the highest performance with greater Jsc and only minor loss in fill factor.

 

PTB7 JV curve for standard architecture
Figure 4: The JV curve for the best performing device - standard architecture.

 

Note 1: Dektak Thickness calibration

We normally calibrate thin films by use of a Dektak surface profiler, however the use of DIO results in an enhanced level of uncertainty in the film as the DIO will take several hours to fully dry under normal conditions and is likely to undergo some slight further shrinkage when placed in vacuum. The DIO can also be removed by baking the substrate on the hotplate at 80°C for about 10 mins which can be useful for doing quick measurements but also drives excess phase separation between the polymer and PCBM making it unsuitable for device work.

Note 2: Effect of epoxy

Due to the very high solubility of the PTB7 it was noted during fabrication that the film changed colour when in contact with the EE1 encapsulation epoxy in liquid form for extended periods indicating that there was some miscibility. Inspection of the active areas underneath the top cathode indicated that the epoxy had not seeped into the active area before curing and device metrics indicate that this did not appear to affect performance. However, we would recommend minimising contact time between the epoxy and PTB7 films before UV curing.

 

Fabrication

Substrates and cleaning

  • Pixelated Cathode substrates (S173)
  • 5 mins sonication in hot Hellmanex (1 ml in beaker)
  • 2x boiling water dump rinses
  • 5 mins sonication in warm IPA
  • 2x dump rinses
  • 5 mins sonication in hot NaOH
  • Dump rinse in boiling water
  • Dump rinse in water
  • Stored in DI water overnight and until use

PEDOT:PSS layer preparation

  • Clevios AI 4083
  • Filtered into vial using Whatman 0.45 μm PVDF filter
  • Spun 6000 rpm for 30 seconds (30 nm)
  • Dynamic dispense of 20 μl using pipettor
  • IPA cathode strip wipe and labelled
  • Put straight onto hotplate at 160°C as soon as cathode wiped and labelled
  • Transferred to glovebox when all samples spun.
  • Baked in glovebox at 150°C for 1 hour

Active layer Solution Preparation

  • Fresh stock solutions of PTB7 at 10 mg/ml in CB and shaken to dissolve
  • Mixed 1:1.5 with dry Ossila 99% C70 PCBM to make overall concentration of 25 mg/ml
  • 1,8 Diiodooctane mixed 1:1 with CB to make measuring out small quantities easier
  • DIO/CB mixture added to solution to give overall DIO amount of 3%

Active layer spin casting

  • Devices spun for 2 mins using 25 μl dynamic dispense
  • Cathode wiped with chlorobenzene
  • Left to dry in glovebox for 2 hours but colour indicated they were still slightly wet
  • Dried in vacuum in glovebox antichamber for 10 mins to remove DIO

Evaporation

Left in chamber over the weekend and evaporated with the below parameters.

MaterialCa
Base pressure8.0 E-8 mbar
Dep start pressure1.7 E-7 mbar
Max pressure2.7 E-7 mbar
Thickness2.5 nm
Rate0.2 ?/s
MaterialAl
Base pressure7.0 E-8 mbar
Dep start pressure6.0 E-7 mbar
Max pressure7.0 E-7 mbar
Thickness100 nm
Rate1.0 ?/s

 Encapsulation

  • As standard using Ossila EE1, 30 mins UV in MEGA LV101

Measurements

  • JV sweeps taken with Keithley 237 source-meter
  • Illumination by Newport Oriel 9225-1000 solar simulator with 100 mW/cm2 AM1.5 output
  • NREL certified silicon reference cell used to calibrate
  • Lamp current: 7.8 A
  • Solar output at start of testing: 0.99 suns at 25°C
  • Solar output at end of testing: 1.00 suns at 25°C
  • Air cooled substrates
  • Room temperature at start of testing: 21°C
  • Room temperature at end of testing: 21°C
  • Calibrated aperture mask of size 0.256 mm2

 

留言框

  • 產品:

  • 您的單位:

  • 您的姓名:

  • 聯系電話:

  • 常用郵箱:

  • 省份:

  • 詳細地址:

  • 補充說明:

  • 驗證碼:

    請輸入計算結果(填寫阿拉伯數字),如:三加四=7

深圳市澤拓生物科技有限公司是國內專業的Ossila材料PTB7 CAS:1266549-31-8 PTB7廠家,歡迎廣大顧客來電咨詢!
深圳市澤拓生物科技有限公司版權所有   |   技術支持:化工儀器網
聯系電話:0755-23003036   傳真:0755-23003036-807 GoogleSitemap 備案號:粵ICP備17105262號  管理登陸
在線客服
用心服務成就你我
免费成人性网站_成人手机在线视频_久热成人在线视频_久国产精品韩国三级视频_日本va欧美va欧美va精品_国产在线一区二区综合免费视频_国产一区二区三区四区在线观看_日韩国产精品91_国产成人精品在线看_日韩av一级片
麻豆成人久久精品二区三区红| 国产精品99久久久久久久vr| 99riav久久精品riav| 99精品视频免费在线观看| 99国产精品国产精品毛片| 丝袜亚洲另类欧美综合| 精品一区二区在线播放| 国产精品99久久久久久久vr| 成人aa视频在线观看| 91看片淫黄大片一级在线观看| 麻豆国产一区二区| 东方欧美亚洲色图在线| 轻轻草成人在线| 麻豆国产精品一区二区三区| 成人丝袜18视频在线观看| 男女激情视频一区| 成人一区二区三区视频| 美腿丝袜亚洲一区| 成人性色生活片免费看爆迷你毛片| 成人黄色在线视频| 视频一区欧美精品| 成人手机在线视频| 日韩成人一区二区三区在线观看| 欧美a级一区二区| 国产一级精品在线| 懂色中文一区二区在线播放| 日韩**一区毛片| 成人午夜在线播放| 久久99国内精品| 成人h动漫精品一区二| 蜜桃av一区二区三区电影| 成人手机在线视频| 国产麻豆一精品一av一免费| 秋霞影院一区二区| 日本aⅴ免费视频一区二区三区| 国产.精品.日韩.另类.中文.在线.播放| 不卡一卡二卡三乱码免费网站| 激情综合色丁香一区二区| 天堂va蜜桃一区二区三区| 日韩国产欧美在线播放| 国产精品88888| 九九在线精品视频| 91视频免费播放| 国产suv一区二区三区88区| 麻豆精品在线视频| 久久激情综合网| 91丨porny丨蝌蚪视频| 国产精品亚洲第一区在线暖暖韩国| 成人av在线网| 免费高清在线视频一区·| 国产福利精品一区二区| 久久www免费人成看片高清| 91免费在线看| 国产精品自拍一区| 成人爱爱电影网址| hitomi一区二区三区精品| 国产精品1区2区| 国产成人午夜视频| 国产一区二区精品久久| 美腿丝袜在线亚洲一区 | 成人黄色a**站在线观看| 国产专区综合网| 蜜桃av一区二区在线观看| 欧美aaaaa成人免费观看视频| 91视频一区二区三区| 奇米一区二区三区av| 国产成a人无v码亚洲福利| 国产激情一区二区三区四区| 精品亚洲porn| 国产精选一区二区三区| 免费观看30秒视频久久| 极品美女销魂一区二区三区 | 成人av网址在线| 国内成+人亚洲+欧美+综合在线| 久久精品国产99| 狠狠久久亚洲欧美| 免费日本视频一区| 久久精品国产999大香线蕉| 豆国产96在线|亚洲| 国产99久久久久久免费看农村| 国产成人精品三级| av高清不卡在线| 久久国内精品视频| 国产69精品久久777的优势| 白白色 亚洲乱淫| 日韩在线一区二区| 国产一区二区三区免费在线观看| 国内成+人亚洲+欧美+综合在线| 成人av电影免费在线播放| 99久久国产免费看| 麻豆精品在线观看| 日本大胆欧美人术艺术动态| 国产精品自产自拍| 91免费视频大全| 精品一区二区三区久久久| 国内不卡的二区三区中文字幕| 麻豆一区二区三| 国产一区二区三区四| 99热精品一区二区| 久久99久久精品| 波多野结衣视频一区| 麻豆精品国产91久久久久久| 高清国产一区二区三区| 99久久精品免费看国产| 日本人妖一区二区| 国内精品自线一区二区三区视频| av日韩在线网站| 捆绑紧缚一区二区三区视频 | 蜜臀久久99精品久久久久宅男| 日韩黄色在线观看| 国产电影一区在线| 美女网站在线免费欧美精品| 国产不卡在线播放| 蜜桃在线一区二区三区| www.欧美精品一二区| 精品在线播放免费| 日本女优在线视频一区二区| 99久久免费国产| 国产成人在线视频播放| 日韩高清一区在线| 国产成人免费高清| 奇米在线7777在线精品 | 日韩精品福利网| 粉嫩在线一区二区三区视频| 91小视频免费看| 不卡一区二区在线| 国产一区二区在线观看视频| 成人97人人超碰人人99| jlzzjlzz国产精品久久| 国产精品自拍网站| 国产一区二区三区高清播放| 韩日精品视频一区| 成人av电影在线播放| 日韩成人dvd| 成人黄色一级视频| thepron国产精品| 99国产精品一区| 高清在线不卡av| 国产一区二区三区视频在线播放| 国产一区在线看| 国内精品自线一区二区三区视频| 免费精品99久久国产综合精品| 日韩福利电影在线| 蜜乳av一区二区| 美女视频黄 久久| 成人网在线免费视频| 不卡欧美aaaaa| 91麻豆国产在线观看| 免费在线视频一区| 美女性感视频久久| 91浏览器在线视频| 免费观看30秒视频久久| 韩国v欧美v日本v亚洲v| 国产成人鲁色资源国产91色综| 成人午夜精品一区二区三区| 不卡av在线网| 日本午夜精品一区二区三区电影| 美女免费视频一区| 久久99精品国产麻豆不卡| 久久99精品久久久久| 国产成人综合网站| 成人高清av在线| 91在线视频观看| 蜜桃一区二区三区在线| 精品一区二区三区免费毛片爱| 91捆绑美女网站| 经典一区二区三区| 国产精品18久久久久久久久久久久| 99riav久久精品riav| 奇米影视7777精品一区二区| 精品一区中文字幕| gogo大胆日本视频一区| 国产在线播放一区| 日韩经典一区二区| 国产黄人亚洲片| 视频一区视频二区中文| 国产精品一区二区不卡| 成人爱爱电影网址| 日本 国产 欧美色综合| 成人黄色在线看| 久久精品国产在热久久| 国产成人福利片| 91啪九色porn原创视频在线观看| 美女精品一区二区| 99久久亚洲一区二区三区青草| 久久超碰97人人做人人爱| 成人精品在线视频观看| 日韩主播视频在线| 成人av网站免费| 国产在线视频不卡二| 96av麻豆蜜桃一区二区| 国产福利精品一区| 青青草国产精品97视觉盛宴| 99在线精品视频| 国产福利一区在线观看| 国产一区视频在线看| 久久精品国产亚洲一区二区三区| 国产精品一区二区在线播放| 日本不卡123| 成人午夜看片网址| 国产剧情在线观看一区二区| 蜜桃精品视频在线| 免费观看久久久4p| 日本最新不卡在线| 91亚洲男人天堂| 国产.欧美.日韩| 国产成人免费视频网站| 国产成人综合精品三级| 国产91丝袜在线观看| 日韩av网站免费在线| 成人激情黄色小说| 成人ar影院免费观看视频| 成人丝袜18视频在线观看| 国产精品一区二区在线播放| 国产美女娇喘av呻吟久久| 91麻豆成人久久精品二区三区| 91亚洲精品久久久蜜桃网站| 99精品视频一区二区| av亚洲精华国产精华精华| 99热在这里有精品免费| 91日韩在线专区| 青娱乐精品视频在线| 奇米精品一区二区三区四区| 免费高清在线一区| 极品美女销魂一区二区三区| 狠狠色丁香久久婷婷综合丁香| 国产一区二区三区黄视频| 国产美女一区二区| 国产69精品久久777的优势| 99国产麻豆精品| 日韩avvvv在线播放| 九一九一国产精品| 国产呦萝稀缺另类资源| 成人激情文学综合网| 天堂一区二区在线免费观看| 91麻豆高清视频| 免费观看久久久4p| 激情综合色丁香一区二区| 国产传媒日韩欧美成人| 99re66热这里只有精品3直播| 97久久精品人人澡人人爽| 日韩福利电影在线| 精品一区精品二区高清| 精品在线播放午夜| 国产成人一区在线| 精品一区二区三区av| 国产成人av资源| 日韩在线一区二区| 国产一二三精品| 91视频xxxx| 日韩高清不卡在线| 国产成人免费高清| 蜜臀av性久久久久蜜臀aⅴ| 国产电影一区二区三区| 日韩成人精品视频| 国产精品一色哟哟哟| 天堂va蜜桃一区二区三区漫画版 | 成人国产精品免费| 美女免费视频一区二区| 国产精品1区2区| 91一区二区三区在线观看| 91玉足脚交白嫩脚丫在线播放| 蜜桃av噜噜一区| 成人性视频网站| 免费观看成人av| av成人动漫在线观看| 91丝袜国产在线播放| 日韩av电影免费观看高清完整版| 国产成人精品免费一区二区| 日韩中文字幕亚洲一区二区va在线 | 成人中文字幕在线| 日日骚欧美日韩| 高清成人在线观看| 国精产品一区一区三区mba桃花| 国产成a人亚洲精| 92国产精品观看| 成人午夜看片网址| 激情深爱一区二区| 免费人成在线不卡| 波多野结衣中文字幕一区二区三区 | 成人18精品视频| 国产成人综合亚洲网站| 久久成人免费电影| 波多野结衣亚洲一区| 国产精品一二三在| 国模一区二区三区白浆 | 久久99蜜桃精品| 不卡欧美aaaaa| www.av精品| 成人一区二区三区视频在线观看 | 国产精品99久久久久久久vr| 免费欧美日韩国产三级电影| 99精品国产视频| 成人免费看黄yyy456| 国产成人精品aa毛片| 国产精品一二三区| 激情深爱一区二区| 极品少妇xxxx精品少妇| 国产资源在线一区| 国模一区二区三区白浆| 老色鬼精品视频在线观看播放| 久久av资源网| 毛片一区二区三区| 成人av免费网站| 美女视频黄免费的久久| 久久99国产乱子伦精品免费| 精品在线观看视频| 91免费视频网| 成人毛片老司机大片| 国产精品综合久久| 国内成人精品2018免费看| 日韩影院在线观看| 91免费观看视频在线| 成人小视频免费观看| 成人听书哪个软件好| 北条麻妃国产九九精品视频| 99国产精品久久久久久久久久 | 蜜臀久久99精品久久久久宅男| 99re亚洲国产精品| 99re这里只有精品首页| 丝袜美腿亚洲一区| 美腿丝袜亚洲色图| 韩国一区二区在线观看| 国产麻豆视频一区| 高清国产午夜精品久久久久久| 99久精品国产| 麻豆91精品91久久久的内涵| 国产精品亚洲一区二区三区妖精| 粉嫩高潮美女一区二区三区| 99国产精品99久久久久久| 免费人成精品欧美精品| 国产一区二三区好的| gogogo免费视频观看亚洲一| 日韩精品免费视频人成| 国产综合成人久久大片91| 粉嫩高潮美女一区二区三区 | 国产在线麻豆精品观看| 成人免费毛片片v| 日本欧美在线看| 国产精品2024| 青青草97国产精品免费观看| 国产v日产∨综合v精品视频| 天堂在线亚洲视频| 国产精品自产自拍| 91免费观看国产| 国产成人啪午夜精品网站男同| 99视频有精品| 国产精品中文字幕一区二区三区| 91香蕉视频污在线| 国产成人免费网站| 另类小说一区二区三区| a级高清视频欧美日韩| 韩国欧美一区二区| www.欧美日韩| 国产精品99久| 麻豆成人91精品二区三区| www.激情成人| 国产老妇另类xxxxx| 日韩av高清在线观看| 成人小视频免费在线观看| 国产在线精品不卡| 视频一区中文字幕国产| 成人久久18免费网站麻豆| 视频在线观看国产精品| www.欧美精品一二区| 国产精品一区免费在线观看| 麻豆国产一区二区| 日韩不卡手机在线v区| 不卡一区中文字幕| 国产麻豆9l精品三级站| 久久av老司机精品网站导航| 日韩精品免费专区| 91丨porny丨蝌蚪视频| 成人国产电影网| 国产不卡高清在线观看视频| 韩国毛片一区二区三区| 精彩视频一区二区三区| 久久精品国产一区二区| 喷白浆一区二区| 欧美aaa在线| 91美女片黄在线观看| 91视频国产观看| 99九九99九九九视频精品| 97国产精品videossex| 成人国产精品免费观看| av在线不卡免费看| 99v久久综合狠狠综合久久| 99久久国产综合精品女不卡| 波多野洁衣一区| 91蝌蚪porny| 日本免费新一区视频| 免费高清在线一区| 麻豆成人免费电影| 韩国成人福利片在线播放| 激情都市一区二区| 国产乱淫av一区二区三区 | 99精品视频免费在线观看| 成人av电影免费在线播放| 99精品视频在线播放观看| 日本不卡的三区四区五区|